(6c-8)(5+3c)=14^2

Simple and best practice solution for (6c-8)(5+3c)=14^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (6c-8)(5+3c)=14^2 equation:



(6c-8)(5+3c)=14^2
We move all terms to the left:
(6c-8)(5+3c)-(14^2)=0
We add all the numbers together, and all the variables
(6c-8)(3c+5)-14^2=0
We add all the numbers together, and all the variables
(6c-8)(3c+5)-196=0
We multiply parentheses ..
(+18c^2+30c-24c-40)-196=0
We get rid of parentheses
18c^2+30c-24c-40-196=0
We add all the numbers together, and all the variables
18c^2+6c-236=0
a = 18; b = 6; c = -236;
Δ = b2-4ac
Δ = 62-4·18·(-236)
Δ = 17028
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17028}=\sqrt{36*473}=\sqrt{36}*\sqrt{473}=6\sqrt{473}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{473}}{2*18}=\frac{-6-6\sqrt{473}}{36} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{473}}{2*18}=\frac{-6+6\sqrt{473}}{36} $

See similar equations:

| (2x-6)²=(6x-6)² | | 10x+20(8,100-x)=127,000 | | 3x^2+13x-14=21-3x | | -30+3c-14+21c=4c-20+3c+27 | | (6x+6)-5=(2x-6)-5 | | (6x+6)=(2x-6) | | -30+3c-14+2c=4c-20+3c+27 | | 1=(3v-2)/4-(2v-4)/5 | | -30+3c-14+2c=4c-2c=3c+27 | | -5-(-44)=x/5 | | h–9=36 | | (2x–5)(3x+2)= | | 1(5/3)+2y=9 | | (x)^(2/3)=12 | | Y=(4x+6) | | (2x-6)²=(6x+6)² | | -9y^2-3y-16=0 | | c=6/6+12*180 | | 2x+3-7=5 | | 2x-5=(2x-5) | | 2.5/x=9 | | x+1/3-4x/6=10 | | 30-14=2(x-9) | | 10x-8x+5x=49 | | 35+5y-1=15y-14-2y | | -10=17-n/4 | | 6x+3+11=8x | | 6y+1=y | | X^2+2x+102=180 | | 8x+21-9x=2-x-15 | | Y=5x+.5 | | 76=2T-(-21t) |

Equations solver categories